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ABSTRACT

Generative adversarial networks (GANs) are a framework for producing a gen-
erative model by way of a two-player minimax game. In this paper, we propose
the Generative Multi-Adversarial Network (GMAN), a framework that extends
GANs to multiple discriminators. In previous work, the successful training of
GANs requires modifying the minimax objective to accelerate training early on.
In contrast, GMAN can be reliably trained with the original, untampered objec-
tive. We explore a number of design perspectives with the discriminator role rang-
ing from formidable adversary to forgiving teacher. Image generation tasks com-
paring the proposed framework to standard GANs demonstrate GMAN produces
higher quality samples in a fraction of the iterations when measured by a pairwise
GAM-type metric.

1 INTRODUCTION

Generative adversarial networks (Goodfellow et al. (2014)) (GANs) are a framework for producing
a generative model by way of a two-player minimax game. One player, the generator, attempts to
generate realistic data samples by transforming noisy samples, z, drawn from a simple distribution
(e.g., z ∼ N (0, 1)) using a transformation function Gθ(z) with learned weights, θ. The generator
receives feedback as to how realistic its synthetic sample is from another player, the discriminator,
which attempts to discern between synthetic data samples produced by the generator and samples
drawn from an actual dataset using a function Dω(x) with learned weights, ω.

The GAN framework is one of the more recent successes in a line of research on adversarial train-
ing in machine learning (Schmidhuber (1992); Bagnell (2005); Ajakan et al. (2014)) where games
between learners are carefully crafted so that Nash equilibria coincide with some set of desired op-
timality criteria. Preliminary work on GANs focused on generating images (e.g., MNIST (LeCun
et al. (1998)), CIFAR (Krizhevsky (2009))), however, GANs have proven useful in a variety of appli-
cation domains including learning censored representations (Edwards & Storkey (2015)), imitating
expert policies (Ho & Ermon (2016)), and domain transfer (Yoo et al. (2016)). Work extending
GANs to semi-supervised learning (Chen et al. (2016); Mirza & Osindero (2014); Gauthier (2014);
Springenberg (2015)), inference (Makhzani et al. (2015); Dumoulin et al. (2016)), feature learning
(Donahue et al. (2016)), and improved image generation (Im et al. (2016); Denton et al. (2015);
Radford et al. (2015)) have shown promise as well.

Despite these successes, GANs are reputably difficult to train. While research is still underway to
improve training techniques and heuristics (Salimans et al. (2016)), most approaches have focused
on understanding and generalizing GANs theoretically with the aim of exploring more tractable
formulations (Zhao et al. (2016); Li et al. (2015); Uehara et al. (2016); Nowozin et al. (2016)).

In this paper, we theoretically and empirically justify generalizing the GAN framework to multiple
discriminators. We review GANs and summarize our extension in Section 2. In Sections 3 and 4,
we present our N -discriminator extension to the GAN framework (Generative Multi-Adversarial
Networks) with several variants which range the role of the discriminator from formidable adversary
to forgiving teacher. Section 4.2 explains how this extension makes training with the untampered
minimax objective tractable. In Section 5, we define an intuitive metric (GMAM) to quantify GMAN
∗Equal contribution
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performance and evaluate our framework on a variety of image generation tasks. Section 6 concludes
with a summary of our contributions and directions for future research.

Contributions—To summarize, our main contributions are: i) a multi-discriminator GAN frame-
work, GMAN, that allows training with the original, untampered minimax objective; ii) a generative
multi-adversarial metric (GMAM) to perform pairwise evaluation of separately trained frameworks;
iii) a particular instance of GMAN, GMAN∗, that allows the generator to automatically regulate
training and reach higher performance (as measured by GMAM) in a fraction of the training time
required for the standard GAN model.

2 GENERATIVE ADVERSARIAL NETWORKS TO GMAN

The original formulation of a GAN is a minimax game between a generator, Gθ(z) : z → x, and a
discriminator, Dω(x) : x→ [0, 1],

min
G

max
D∈D

V (D,G) = Ex∼pdata(x)

[
log(D(x))

]
+ Ez∼pz(z)

[
log(1−D(G(z)))

]
, (1)

where pdata(x) is the true data distribution and pz(z) is a simple (usually fixed) distribution that is
easy to draw samples from (e.g., N (0, 1)). We differentiate between the function space of discrim-
inators, D, and elements of this space, D. Let pG(x) be the distribution induced by the generator,
Gθ(z). We assume D,G to be deep neural networks as is typically the case.

In their original work, Goodfellow et al. (2014) proved that given sufficient network capacities
and an oracle providing the optimal discriminator, D∗ = argmaxD V (D,G), gradient descent on
pG(x) will recover the desired globally optimal solution, pG(x) = pdata(x), so that the generator
distribution exactly matches the data distribution. In practice, they replaced the second term, log(1−
D(G(z))), with − log(D(G(z))) to enhance gradient signals at the start of the game; note this is no
longer a zero-sum game. Part of their convergence and optimality proof involves using the oracle,
D∗, to reduce the minimax game to a minimization over G only:

min
G

V (D∗, G) = min
G

{
C(G) = − log(4) + 2 · JSD(pdata||pG)

}
(2)

where JSD denotes Jensen-Shannon divergence. Minimizing C(G) necessarily minimizes JSD,
however, we rarely know D∗ and so we instead minimize V (D,G), which is only a lower bound.

This perspective of minimizing the distance between the distributions, pdata and pG, motivated
Li et al. (2015) to develop a generative model that matches all moments of pG(x) with pdata(x) (at
optimality) by minimizing maximum mean discrepancy (MMD). Another approach, EBGAN, (Zhao
et al. (2016)) explores a larger class of games (non-zero-sum games) which generalize the generator
and discriminator objectives to take real-valued “energies” as input instead of probabilities. Nowozin
et al. (2016) and then Uehara et al. (2016) extended the JSD perspective on GANs to more general
divergences, specifically f -divergences and then Bregman-divergences respectively.

In general, these approaches focus on exploring fundamental reformulations of V (D,G). Similarly,
our work focuses on a fundamental reformulation, however, our aim is to provide a framework that
accelerates training of the generator to a more robust state irrespective of the choice of V .

2.1 GMAN: A MULTI-ADVERSARIAL EXTENSION

We propose introducing multiple discriminators, which brings with it a number of design possibil-
ities. We explore approaches ranging between two extremes: 1) a more discriminating D (better
approximating maxD V (D,G)) and 2) a D better matched to the generator’s capabilities. Math-
ematically, we reformulate G’s objective as minG maxF (V (D1, G), . . . , V (DN , G)) for different
choices of F (see Figure 1). Each Di is still expected to independently maximize its own V (Di, G)
(i.e. no cooperation). We sometimes abbreviate V (Di, G) with Vi and F (V1, . . . , VN ) with FG(Vi).

3 A FORMIDABLE ADVERSARY

Here, we consider multi-discriminator variants that attempt to better approximate maxD V (D,G),
providing a harsher critic to the generator.
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G

DND2D1

V(DN,G)V(D2,G)V(D1,G)

F(·)

Figure 1: (GMAN) The generator trains using feedback aggregated over multiple discriminators. If
F := max, G trains against the best discriminator. If F := mean, G trains against an ensemble.
We explore other alternatives to F in Sections 4.1 & 4.4 that improve on both these options.

3.1 MAXIMIZING V(D,G)

For a fixed G, maximizing FG(Vi) with F := max and N randomly instantiated copies of our dis-
criminator is functionally equivalent to optimizing V (e.g., stochastic gradient ascent) with random
restarts in parallel and then presenting maxi∈{1,...,N} V (Di, G) as the loss to the generator —a very
pragmatic approach to the difficulties presented by the non-convexity of V caused by the deep net.
Requiring the generator to minimize the max forces G to generate high fidelity samples that must
hold up under the scrutiny of all N discriminators, each potentially representing a distinct max.

In practice, maxDi∈D V (Di, G) is not performed to convergence (or global optimality), so the
above problem is oversimplified. Furthermore, introducing N discriminators affects the dynam-
ics of the game which affects the trajectories of the discriminators. This prevents us from claiming
max{V1(t), . . . , VN (t)} > max{V ′1(t)} ∀t even if we initalize D1(0) = D′1(0) as it is unlikely that
D1(t) = D′1(t) at some time t after the start of the game.

3.2 BOOSTING

We can also consider taking the max over N discriminators as a form of boosting for the discrim-
inator’s online classification problem (online because G can produce an infinite data stream). The
boosted discriminator is given a sample xt and must predict whether it came from the generator or
the dataset. The booster then makes its prediction using the predictions of the N weaker Di.

There are a few differences between taking the max (case 1) and online boosting (case 2). In case 1,
our booster is limited to selecting a single weak discriminator (i.e. a pure strategy), while in case 2,
many boosting algorithms more generally use linear combinations of the discriminators. Moreover,
in case 2, a booster must make a prediction before receiving a loss function. In case 1, we assume
access to the loss function at prediction time, which allows us to compute the max.

It is possible to train the weak discriminators using boosting and then ignore the booster’s prediction
by instead presenting max{Vi}. We explore both variants in our experiments, using the adaptive al-
gorithm proposed in Beygelzimer et al. (2015). Unfortunately, boosting failed to produce promising
results on the image generation tasks. It is possible that boosting produces too strong an adversary
for learning which motivates the next section. Boosting results appear in Appendix A.7.

4 A FORGIVING TEACHER

The previous perspectives focus on improving the discriminator with the goal of presenting a better
approximation of maxD V (D,G) to the generator. Our next perspective asks the question, “Is
maxD V (D,G) too harsh a critic?”

4.1 Soft-DISCRIMINATOR

In practice, training against a far superior discriminator can impede the generator’s learning. This
is because the generator is unlikely to generate any samples considered “realistic” by the discrimi-
nator’s standards, and so the generator will receive uniformly negative feedback. This is problem-
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atic because the information contained in the gradient derived from negative feedback only dictates
where to drive down pG(x), not specifically where to increase pG(x). Furthermore, driving down
pG(x) necessarily increases pG(x) in other regions of X (to maintain

∫
X pG(x) = 1) which may or

may not contain samples from the true dataset (whack-a-mole dilemma). In contrast, a generator is
more likely to see positive feedback against a more lenient discriminator, which may better guide a
generator towards amassing pG(x) in approximately correct regions of X .

For this reason, we explore a variety of functions that allow us to soften the max operator. We
choose to focus on soft versions of the three classical Pythagorean means parameterized by λ where
λ = 0 corresponds to the mean and the max is recovered as λ→∞:

AMsoft(V, λ) =

N∑

i

wiVi (3)

GMsoft(V, λ) = − exp
( N∑

i

wi log(−Vi)
)

(4)

HMsoft(V, λ) =
( N∑

i

wiV
−1
i

)−1

(5)

wherewi = eλVi/Σje
λVj with λ ≥ 0, Vi < 0. Using a softmax also has the well known advantage of

being differentiable (as opposed to subdifferentiable for max). Note that we only require continuity
to guarantee that computing the softmax is actually equivalent to computing V (D̃,G) where D̃ is
some convex combination of Di (see Appendix A.5).

4.2 USING THE ORIGINAL MINIMAX OBJECTIVE

To illustrate the effect the softmax has on training, observe that the component of AMsoft(V, 0)
relevant to generator training can be rewritten as

1

N

N∑

i

Ex∼pG(x)

[
log(1−Di(x))

]
=

1

N
Ex∼pG(x)

[
log(z)

]
. (6)

where z =
∏N
i (1−Di(x)). Note that the generator gradient, |∂ log(z)

∂z |, is minimized at z = 1 over
z ∈ (0, 1]1. From this form, it is clear that z = 1 if and only if Di = 0∀i, so G only receives a
vanishing gradient if all Di agree that the sample is fake; this is especially unlikely for large N . In
other words,G only needs to fool a singleDi to receive constructive feedback. This result allows the
generator to successfully minimize the original generator objective, log(1−D). This is in contrast
to the more popular − log(D) introduced to artificially enhance gradients at the start of training.

At the beginning of training, when maxDi
V (Di, G) is likely too harsh a critic for the generator, we

can set λ closer to zero to use the mean, increasing the odds of providing constructive feedback to
the generator. In addition, the discriminators have the added benefit of functioning as an ensemble,
reducing the variance of the feedback presented to the generator, which is especially important
when the discriminators are far from optimal and are still learning a reasonable decision boundary.
As training progresses and the discriminators improve, we can increase λ to become more critical
of the generator for more refined training.

4.3 MAINTAINING MULTIPLE HYPOTHESES

We argue for this ensemble approach on a more fundamental level as well. Here, we draw on
the density ratio estimation perspective of GANs (Uehara et al. (2016)). The original GAN proof
assumes we have access to pdata(x), if only implicitly. In most cases of interest, the discriminator
only has access to a finite dataset sampled from pdata(x); therefore, when computing expectations
of V (D,G), we only draw samples from our finite dataset. This is equivalent to training a GAN
with pdata(x) = p̃data which is a distribution consisting of point masses on all the data points in the
dataset. For the sake of argument, let’s assume we are training a discriminator and generator, each

1∇GV = −∑
i
Di
z

∂Di
∂G

∏
j 6=i(1−Dj) = − 1

z
∂Dk
∂G

for Dk = 1, D 6=k = 0. Our argument ignores ∂Dk
∂G

.
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with infinite capacity. In this case, the global optimum (pG(x) = p̃data(x)) fails to capture any of
the interesting structure from pdata(x), the true distribution we are trying to learn. Therefore, it is
actually critical that we avoid this global optimum.

x

p(x)

Figure 2: Consider a dataset consisting of the nine 1-dimensional samples in black. Their corre-
sponding probability mass function is given in light gray. After training GMAN, three discrimina-
tors converge to distinct local optima which implicitly define distributions over the data (red, blue,
yellow). Each discriminator may specialize in discriminating a region of the data space (placing
more diffuse mass in other regions). Averaging over the three discriminators results in the distribu-
tion in black, which we expect has higher likelihood under reasonable assumptions on the structure
of the true distribution.

In practice, this degenerate result is avoided by employing learners with limited capacity and corrupt-
ing data samples with noise (i.e., dropout), but we might better accomplish this by simultaneously
training a variety of limited capacity discriminators. With this approach, we might obtain a diverse
set of seemingly tenable hypotheses for the true pdata(x). Averaging over these multiple locally
optimal discriminators increases the entropy of p̃data(x) by diffusing the probability mass over the
data space (see Figure 2 for an example).

4.4 AUTOMATING REGULATION

The problem of keeping the discriminator and generator in balance has been widely recognized in
previous work with GANs. Issues with unstable dynamics, oscillatory behavior, and generator col-
lapse are not uncommon. In addition, the discriminator is often times able to achieve a high degree of
classification accuracy (producing a single scalar) before the generator has made sufficient progress
on the arguably more difficult generative task (producing a high dimensional sample). Salimans
et al. (2016) suggested label smoothing to reduce the vulnerability of the generator to a relatively
superior discriminator. Here, we explore an approach that enables the generator to automatically
temper the performance of the discriminator when necessary, but still encourages the generator to
challenge itself against more accurate adversaries. Specifically, we augment the generator objective:

min
G,λ>0

FG(Vi)− f(λ) (7)

where f(λ) is monotonically increasing in λ which appears in the softmax equations, (3)—(5). In
experiments, we simply set f(λ) = cλ with c a constant (e.g., 0.001). The generator is incentivized
to increase λ to reduce its objective at the expense of competing against the best available adversary
D∗ (see Appendix A.6).

5 EVALUATION

Evaluating GANs is still an open problem. In their original work, Goodfellow et al. (2014) report
log likelihood estimates from Gaussian Parzen windows, which they admit, has high variance and
is known not to perform well in high dimensions. Theis et al. (2016) recommend avoiding Parzen
windows and argue that generative models should be evaluated with respect to their intended appli-
cation. Salimans et al. (2016) suggest an Inception score, however, it assumes labels exist for the
dataset. Recently, Im et al. (2016) introduced the Generative Adversarial Metric (GAM) for mak-
ing pairwise comparisons between independently trained GAN models. The core idea behind their
approach is given two generator, discriminator pairs (G1, D1) and (G2, D2), we should be able to
learn their relative performance by judging each generator under the opponent’s discriminator.
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5.1 METRIC

In GMAN, the opponent may have multiple discriminators, which makes it unclear how to perform
the swaps needed for GAM. We introduce a variant of GAM, the generative multi-adversarial metric
(GMAM), that is amenable to training with multiple discriminators,

GMAM = log
(F aGb

(V ai )

F aGa
(V ai )

/F aGa
(V bi )

F bGb
(V bi )

)
. (8)

where a and b refer to the two GMAN variants (see Section 3 for notation FG(Vi)). The idea here is
similar. If G2 performs better than G1 with respect to both D1 and D2, then GMAM>0 (remember
V≤0 always). IfG1 performs better in both cases, GMAM<0, otherwise, the result is indeterminate.

5.2 EXPERIMENTS

We evaluate the aforementioned variations of GMAN on a variety of image generation tasks: MNIST
(LeCun et al. (1998)), CIFAR-10 (Krizhevsky (2009)) and CelebA (Liu et al. (2015)). We focus on
rates of convergence to steady state along with quality of the steady state generator according to the
GMAM metric. To summarize, loosely in order of increasing discriminator leniency, we compare

• F-boost: A single AdaBoost.OL-boosted discriminator (see Appendix A.7).

• P-boost: Di is trained according to AdaBoost.OL. A max over the weak learner losses is
presented to the generator instead of the boosted prediction (see Appendix A.7).

• GMAN-max: max{Vi} is presented to the generator.

• GAN: Standard GAN with a single discriminator (see Appendix A.2).

• mod-GAN: GAN with modified objective (generator minimizes − log(D(G(z))).

• GMAN-λ: GMAN with F :=arithmetic softmax with parameter λ.

• GMAN∗: The arithmetic softmax is controlled by the generator through λ.

All generator and discriminator models are deep (de)convolutional networks (Radford et al. (2015)),
and aside from the boosted variants, all are trained with Adam (Kingma & Ba (2014)) and batch
normalization (Ioffe & Szegedy (2015)). Discriminators convert the real-valued outputs of their
networks to probabilities with squashed-sigmoids to prevent saturating logarithms in the minimax
objective (ε + 1−2ε

1+e−z ). See Appendix A.8 for further details. We test GMAN systems with N =

{2, 5} discriminators. We maintain discriminator diversity by varying dropout and network depth.

5.2.1 MNIST

Figure 3 reveals that increasing the number of discriminators reduces the number of iterations to
steady-state by 2x on MNIST; increasing N (the size of the discriminator ensemble) also has the
added benefit of reducing the variance the minimax objective over runs. Figure 4 displays the vari-
ance of the same objective over a sliding time window, reaffirming GMAN’s acceleration to steady-
state. Figure 5 corroborates this conclusion with recognizable digits appearing approximately an
epoch before the single discriminator run; digits at steady-state appear slightly sharper as well.

Our GMAM metric (see Table 1) agrees with the relative quality of images in Figure 5 with GMAN∗
achieving the best overall performance. Figure 6 reveals GMAN∗’s attempt to regulate the difficulty

Score Variant GMAN∗ GMAN-0 GMAN-max mod-GAN

B
et

te
r→

0.127 GMAN∗ - −0.020± 0.009 −0.028± 0.019 −0.089± 0.036
0.007 GMAN-0 0.020± 0.009 - −0.013± 0.015 −0.018± 0.027
−0.034 GMAN-max 0.028± 0.019 0.013± 0.015 - −0.011± 0.024
−0.122 mod-GAN 0.089± 0.036 0.018± 0.027 0.011± 0.024 -

Table 1: Pairwise GMAM metric means with stdev for select models on MNIST. For each column, a
positive GMAM indicates better performance relative to the row opponent; negative implies worse.
Scores are obtained by summing each variant’s column.
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Figure 3: Generator objective, F , averaged
over 5 training runs on MNIST. Increas-
ing the number of discriminators accelerates
convergence of F to steady state (solid line)
and reduces its variance, σ2 (filled shadow
±1σ). Figure 4 provides alternative evidence
of GMAN∗’s accelerated convergence.

Figure 4: Stdev, σ, of the generator objec-
tive over a sliding window of 500 iterations.
Lower values indicate a more steady-state.
GMAN∗ with N = 5 achieves steady-state
at ≈2x speed of GAN (N = 1). Note Fig-
ure 3’s filled shadows reveal stdev of F over
runs, while this plot shows stdev over time.

Figure 5: Comparison of image quality across epochs forN = {1, 2, 5} using GMAN-0 on MNIST.

of the game to accelerate learning. Figure 7 displays the GMAM scores comparing fixed λ’s to the
variable λ controlled by GMAN∗.

Figure 6: GMAN∗ regulates difficulty of the
game by adjusting λ. Initially,G reduces λ to
ease learning and then gradually increases λ
for a more challenging learning environment.

Score λ λ∗ λ = 1 λ = 0
(N = 5)

B
et

te
r→ 0.028 λ∗ - −0.008

±0.009
−0.019
±0.010

0.001 λ = 1 0.008
±0.009

- −0.008
±0.010

−0.025 λ = 0 0.019
±0.010

0.008
±0.010

-

Figure 7: Pairwise GMAM
stdev(GMAM) for GMAN-λ and

GMAN∗ (λ∗) over 5 runs on MNIST.
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5.2.2 CELEBA & CIFAR-10

We see similar accelerated convergence behavior for the CelebA dataset in Figure 8.

Figure 8: Image quality improvement across number of generators at same number of iterations for
GMAN-0 on CelebA.

Figure 9 displays images generated by GMAN-0 on CIFAR-10. See Appendix A.3 for more results.

Figure 9: Images generated by GMAN-0 on the CIFAR-10 dataset.

We also found that GMAN is robust to mode collapse. We believe this is because the generator
must appease a diverse set of discriminators in each minibatch. Emitting a single sample will score
well for one discriminator at the expense of the rest of the discriminators. Current solutions (e.g.,
minibatch discrimination) are quadratic in batch size. GMAN, however, is linear in batch size.

6 CONCLUSION

We introduced multiple discriminators into the GAN framework and explored discriminator roles
ranging from a formidable adversary to a forgiving teacher. Allowing the generator to automatically
tune its learning schedule (GMAN∗) outperformed GANs with a single discriminator on MNIST. In
general, GMAN variants achieved faster convergence to a higher quality steady state on a variety of
tasks as measured by a GAM-type metric (GMAM). In addition, GMAN makes using the original
GAN objective possible by increasing the odds of the generator receiving constructive feedback.

In future work, we will look at more sophisticated mechanisms for letting the generator control
the game as well as other ways to ensure diversity among the discriminators. Introducing multiple
generators is conceptually an obvious next step, however, we expect difficulties to arise from more
complex game dynamics. For this reason, game theory and game design will likely be important.

ACKNOWLEDGMENTS

We acknowledge helpful conversations with Stefan Dernbach, Archan Ray, Luke Vilnis, Ben Turtel,
Stephen Giguere, Rajarshi Das, and Subhransu Maji. We also thank NVIDIA for donating a K40
GPU. This material is based upon work supported by the National Science Foundation under Grant
Nos. IIS-1564032. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the NSF.

8



Published as a conference paper at ICLR 2017

BIBLIOGRAPHY

Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, and Mario Marchand.
Domain-adversarial neural networks. arXiv preprint arXiv:1412.4446, 2014.

J Andrew Bagnell. Robust supervised learning. In Proceedings Of The National Conference On
Artificial Intelligence, volume 20, pp. 714. Menlo Park, CA; Cambridge, MA; London; AAAI
Press; MIT Press; 1999, 2005.

Alina Beygelzimer, Satyen Kale, and Haipeng Luo. Optimal and adaptive algorithms for online
boosting. arXiv preprint arXiv:1502.02651, 2015.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Info-
gan: Interpretable representation learning by information maximizing generative adversarial nets.
arXiv preprint arXiv:1606.03657, 2016.

Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep generative image models using a
laplacian pyramid of adversarial networks. In Advances in neural information processing systems,
pp. 1486–1494, 2015.
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A APPENDIX

A.1 ACCELERATED CONVERGENCE & REDUCED VARIANCE

See Figures 10, 11, 12, and 13.

Figure 10: Generator objective, F , averaged
over 5 training runs on CelebA. Increasing
N (# of D) accelerates convergence of F to
steady state (solid line) and reduces its vari-
ance, σ2 (filled shadow±1σ). Figure 11 pro-
vides alternative evidence of GMAN-0’s ac-
celerated convergence.

Figure 11: Stdev, σ, of the generator objec-
tive over a sliding window of 500 iterations.
Lower values indicate a more steady-state.
GMAN-0 with N = 5 achieves steady-state
at ≈2x speed of GAN (N = 1). Note Fig-
ure 10’s filled shadows reveal stdev of F over
runs, while this plot shows stdev over time.

Figure 12: Generator objective, F , averaged
over 5 training runs on CIFAR-10. Increas-
ing N (# of D) accelerates convergence of
F to steady state (solid line) and reduces its
variance, σ2 (filled shadow ±1σ). Figure 13
provides alternative evidence of GMAN-0’s
accelerated convergence.

Figure 13: Stdev, σ, of the generator objec-
tive over a sliding window of 500 iterations.
Lower values indicate a more steady-state.
GMAN-0 with N = 5 achieves steady-state
at ≈2x speed of GAN (N = 1). Note Fig-
ure 12’s filled shadows reveal stdev of F over
runs, while this plot shows stdev over time.

A.2 ADDITIONAL GMAM TABLES

See Tables 2, 3, 4, 5, 6. Increasing the number of discriminators from 2 to 5 on CIFAR-10 signif-
icantly improves scores over the standard GAN both in terms of the GMAM metric and Inception
scores.

A.3 GENERATED IMAGES

See Figures 14 and 15.
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Score Variant GMAN∗ GMAN-1 GAN GMAN-0 GMAN-max mod-GAN
B

et
te

r→
0.184 GMAN∗ - −0.007 −0.040 −0.020 −0.028 −0.089
0.067 GMAN-1 0.007 - −0.008 −0.008 −0.021 −0.037
0.030 GAN 0.040 0.008 - 0.002 −0.018 −0.058
0.005 GMAN-0 0.020 0.008 0.002 - −0.013 −0.018
−0.091 GMAN-max 0.028 0.021 0.018 0.013 - −0.011
−0.213 mod-GAN 0.089 0.037 0.058 0.018 0.011 -

Table 2: Pairwise GMAM metric means for select models on MNIST. For each column, a positive
GMAM indicates better performance relative to the row opponent; negative implies worse. Scores
are obtained by summing each column.

Score Variant GMAN-0 GMAN-1 GMAN∗ mod-GAN

B
et

te
r→

0.172 GMAN-0 - −0.022 −0.062 −0.088
0.050 GMAN-1 0.022 - 0.006 −0.078
−0.055 GMAN∗ 0.062 −0.006 - −0.001
−0.167 mod-GAN 0.088 0.078 0.001 -

Table 3: Pairwise GMAM metric means for select models on CIFAR-10. For each column, a positive
GMAM indicates better performance relative to the row opponent; negative implies worse. Scores
are obtained by summing each column. GMAN variants were trained with two discriminators.

GMAN-0 GMAN-1 mod-GAN GMAN∗
Score 5.878± 0.193 5.765± 0.168 5.738± 0.176 5.539± 0.099

Table 4: Inception score means with standard deviations for select models on CIFAR-10. Higher
scores are better. GMAN variants were trained with two discriminators.

Score Variant GMAN-0 GMAN∗ GMAN-1 mod-GAN

B
et

te
r→

0.180 GMAN-0 - −0.008 −0.041 −0.132
0.122 GMAN∗ 0.008 - −0.038 −0.092
0.010 GMAN-1 0.041 0.038 - −0.089
−0.313 mod-GAN 0.132 0.092 0.089 -

Table 5: Pairwise GMAM metric means for select models on CIFAR-10. For each column, a positive
GMAM indicates better performance relative to the row opponent; negative implies worse. Scores
are obtained by summing each column. GMAN variants were trained with five discriminators.

GMAN-1 GMAN-0 GMAN∗ mod-GAN
Score 6.001± 0.194 5.957± 0.135 5.955± 0.153 5.738± 0.176

Table 6: Inception score means with standard deviations for select models on CIFAR-10. Higher
scores are better. GMAN variants were trained with five discriminators.

Figure 14: Sample of pictures generated on CelebA cropped dataset.
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Figure 15: Sample of pictures generated by GMAN-0 on CIFAR dataset.

A.4 SOMEWHAT RELATED WORK

A GAN framework with two discriminators appeared in Yoo et al. (2016), however, it is applica-
ble only in a semi-supervised case where a label can be assigned to subsets of the dataset (e.g.,
X = {X1 = Domain 1,X2 = Domain 2, . . .}). In contrast, our framework applies to an unsu-
pervised scenario where an obvious partition of the dataset is unknown. Furthermore, extending
GMAN to the semi-supervised domain-adaptation scenario would suggest multiple discriminators
per domain, therefore our line of research is strictly orthogonal to that of their multi-domain dis-
criminator approach. Also, note that assigning a discriminator to each domain is akin to prescribing
a new discriminator to each value of a conditional variable in conditional GANs (Mirza & Osindero
(2014)). In this case, we interpret GMAN as introducing multiple conditional discriminators and not
a discriminator for each of the possibly exponentially many conditional labels.

In Section 4.4, we describe an approach to customize adversarial training to better suit the devel-
opment of the generator. An approach with similar conceptual underpinnings was described in
Ravanbakhsh et al. (2016), however, similar to the above, it is only admissible in a semi-supervised
scenario whereas our applies to the unsupervised case.

A.5 Softmax REPRESENTABILITY

Let softmax(Vi) = V̂ ∈ [minVi ,maxVi ]. Also let a = argmini Vi, b = argmaxi Vi, and V(t) =
V ((1 − t)Da + tDb) so that V(0) = Va and V(1) = Vb. The softmax and minimax objective
V (Di, G) are both continuous in their inputs, so by the intermediate value theorem, we have that
∃ t̂ ∈ [0, 1] s.t. V(t̂) = V̂ , which implies ∃ D̂ ∈ D s.t. V (D̂,G) = V̂ . This result implies that
the softmax (and any other continuous substitute) can be interpreted as returning V (D̂,G) for some
D̂ selected by computing an another, unknown function over the space of the discriminators. This
result holds even if D̂ is not representable by the architecture chosen for D’s neural network.
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A.6 UNCONSTRAINED OPTIMIZATION

To convert GMAN∗ minimax formulation to an unconstrained minimax formulation, we introduce
an auxiliary variable, Λ, define λ(Λ) = log(1 + eΛ), and let the generator minimize over Λ ∈ R.

A.7 BOOSTING WITH AdaBoost.OL

AdaBoost.OL (Beygelzimer et al. (2015)) does not require knowledge of the weak learner’s slight
edge over random guessing (P (correct label) = 0.5 + γ ∈ (0, 0.5]), and in fact, allows γ < 0. This
is crucial because our weak learners are deep nets with unknown, possibly negative, γ’s.

Figure 16: Sample of pictures generated across 4 independent runs on MNIST with F-boost (similar
results with P-boost).

A.8 EXPERIMENTAL SETUP

All experiments were conducted using an architecture similar to DCGAN (Radford et al. (2015)).
We use convolutional transpose layers (Zeiler et al. (2010)) for G and strided convolutions for D
except for the input of G and the last layer of D. We use the single step gradient method as in
(Nowozin et al. (2016)), and batch normalization (Ioffe & Szegedy (2015)) was used in each of
the generator layers. The different discriminators were trained with varying dropout rates from
[0.3, 0.7]. Variations in the discriminators were effected in two ways. We varied the architecture by
varying the number of filters in the discriminator layers (reduced by factors of 2, 4 and so on), as
well as varying dropout rates. Secondly we also decorrelated the samples that the disriminators were
training on by splitting the minibatch across the discriminators. The code was written in Tensorflow
(Abadi et al. (2016)) and run on Nvidia GTX 980 GPUs. Code to reproduce experiments and plots
is at https://github.com/iDurugkar/GMAN. Specifics for the MNIST architecture and training are:

• Generator latent variables z ∼ U (−1, 1)
100

• Generator convolution transpose layers: (4, 4, 128) , (8, 8, 64) , (16, 16, 32) , (32, 32, 1)

• Base Discriminator architecture: (32, 32, 1) , (16, 16, 32) , (8, 8, 64) , (4, 4, 128).
• Variants have either convolution 3 (4, 4, 128) removed or all the filter sizes

are divided by 2 or 4. That is, (32, 32, 1) , (16, 16, 16) , (8, 8, 32) , (4, 4, 64) or
(32, 32, 1) , (16, 16, 8) , (8, 8, 16) , (4, 4, 32).

• ReLu activations for all the hidden units. Tanh activation at the output units of the generator.
Sigmoid at the output of the Discriminator.

• Training was performed with Adam (Kingma & Ba (2014)) (lr = 2× 10−4, β1 = 0.5).
• MNIST was trained for 20 epochs with a minibatch of size 100.
• CelebA and CIFAR were trained over 24000 iterations with a minibatch of size 100.
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